
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of 

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Tracking evasive objects via a search allocation game

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

This paper outlines a strategy for tracking evasive

objects in discrete space using game theory to allocate sensor

resources. One or more searchers have to allocate the effort

among the discrete cells to maximize the object detection probability

within a finite time horizon or minimize the expected

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

29-03-2012

13.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 

ADDRESS(ES)

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office 

 P.O. Box 12211 

 Research Triangle Park, NC 27709-2211

15.  SUBJECT TERMS

a,b,c,d,e

H. Chen, D. Shen, G. Chen, E. Blasch, K. Pham

University of New Orleans

2000 Lakeshore Drive

New Orleans, LA 70148 -

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Conference Proceeding

17.  LIMITATION OF 

ABSTRACT

UU

15.  NUMBER 

OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

W911NF-08-1-0409

611102

Form Approved OMB NO. 0704-0188

54370-CS.58

11.  SPONSOR/MONITOR'S REPORT 

NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)

    ARO

8.  PERFORMING ORGANIZATION REPORT 

NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER

X. Rong Li

504-280-7416

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98) 

Prescribed by ANSI  Std. Z39.18

-



Tracking evasive objects via a search allocation game

Report Title

ABSTRACT

This paper outlines a strategy for tracking evasive

objects in discrete space using game theory to allocate sensor

resources. One or more searchers have to allocate the effort

among the discrete cells to maximize the object detection probability

within a finite time horizon or minimize the expected

search time to achieve the desired detection probability under a

false alarm constraint.We review the standard formulations under

a sequential decision setting for finding stationary objects.

Then we consider both robust and optimal search strategies

and extend the standard search problem to a two-person zerosum

search allocation game where the object wants to hide

from the searcher and the object has incomplete information

about the searcher’s remaining search time. We discuss how the

results affect the sensor management and mission planning for

cooperative unmanned aerial vehicle (UAV) search tasks and

provide simulation examples to show the effectiveness of the

proposed method compared with random search strategy.

Conference Name:  Proc. of American Control Conf., Baltimore, MD, USA

Conference Date:  June 30, 2010



This paper outlines a strategy for tracking evasive

objects in discrete space using game theory to allocate sensor

resources. One or more searchers have to allocate the effort

among the discrete cells to maximize the object detection probability

within a finite time horizon or minimize the expected

search time to achieve the desired detection probability under a

false alarm constraint.We review the standard formulations under

a sequential decision setting for finding stationary objects.

Then we consider both robust and optimal search strategies

and extend the standard search problem to a two-person zerosum

search allocation game where the object wants to hide

from the searcher and the object has incomplete information

about the searcher’s remaining search time. We discuss how the

results affect the sensor management and mission planning for

cooperative unmanned aerial vehicle (UAV) search tasks and

provide simulation examples to show the effectiveness of the

proposed method compared with random search strategy.



Tracking Evasive Objects via A Search Allocation Game

Huimin Chen, Dan Shen, Genshe Chen, Erik P. Blasch, and Khanh Pham

Abstract— This paper outlines a strategy for tracking evasive
objects in discrete space using game theory to allocate sensor
resources. One or more searchers have to allocate the effort
among the discrete cells to maximize the object detection prob-
ability within a finite time horizon or minimize the expected
search time to achieve the desired detection probability under a
false alarm constraint. We review the standard formulations un-
der a sequential decision setting for finding stationary objects.
Then we consider both robust and optimal search strategies
and extend the standard search problem to a two-person zero-
sum search allocation game where the object wants to hide
from the searcher and the object has incomplete information
about the searcher’s remaining search time. We discuss how the
results affect the sensor management and mission planning for
cooperative unmanned aerial vehicle (UAV) search tasks and
provide simulation examples to show the effectiveness of the
proposed method compared with random search strategy.

I. INTRODUCTION

One of the challenges in the constellation management

of sensor platforms and in the path planning for tracking

evasive objects is an associated search problem: for objects

or threats that have not yet been identified, how to model

the uncertainties in the operational field and allocate the

sensing resources accordingly? The field of search theory

addresses this problem from various aspects: the search space

can be discrete or continuous; the object can be stationary

or moving; the sensor can have single-look or multiple looks

of the area at a particular time instant. For a comprehensive

review, see [2].

A. Object Search Problem in Discrete Space

We consider a finite probability space X = {1,2, ...,n} with

each point i ∈ X being associated with a Wiener process

yi(t). The n Wiener processes are independent with the same

variance σ 2t. If an object is in cell i, then E[yi(t)] = µt (µ >
0). Otherwise, the mean of the process y i(t) is zero (µ = 0).

A searcher can only focus on one cell at any given time.

Assume that the prior probability that cell i contains an object

is pi(0), then a searcher looking at cell i from time 0 to t with

measurement y = yi(t) will update its posterior probability

This work was supported in part by the Air Force Research Laboratory
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W911NF-08-1-0409, Louisiana Board of Regents NSF(2009)-PFUND-162,
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that cell i containing the object using Bayes’ rule

pi(t|y) =
pi(0)

pi(0)+ (1− pi(0))e

(

µ

2σ2

)

(µt−2y)
(1)

In terms of the log-likelihood ratio

zi(t) = log

(

pi(t|y)
1− pi(t|y)

)

we have

zi(t) = zi(0)−
µ

2σ 2
(µt − 2y) (2)

Clearly, zi(t) is also a Wiener process with mean (µ 2/2σ 2)t
if cell i contains an object and −(µ 2/2σ 2)t if cell i does not

contain an object. The variance is (µ 2/σ2)t in either case.

The searcher needs to sequentially determine which cell to

look at and for how long.

B. Related Works

Optimal search theory deals with the following generic

problem: A single object is hidden in one of the n cells. Each

cell can provide the searcher with prior probability of object

presence as well as the detection and false alarm probabilities

for a fully specified sensing action. The goal is to design a

search policy that maximizes the probability of detecting the

object at the end of the mission. The two-stage procedure

was first proposed by Posner [8] where he considered using

a radar to locate a satellite in the sky containing n cells. The

optimality of greedy search which is to look at the cell with

the largest log-likelihood ratio sequentially was proved in

[11] and extended to the dynamical and multiple hypothesis

testing cases in [3]. Connections to compressed sensing for

acquiring sparse signals under energy constraint have been

studied in [9], [1] where [9] showed an adaptive search policy

for signals having a sparse representation in the search space

while [1] provided an optimal two-stage procedure to recover

sparse signals using a convex criterion.

The two-stage approach is mainly for a single searcher

looking for a single stationary object. The k-stage approach

is more appropriate for finding multiple objects in sparse

locations using a team of searchers cooperatively. The search

for intelligent object with dynamic mobility requires to

study the search allocation game and dedicate the sensing

resources in a not-too-greedy manner. A realistic mission

may contain multiple objectives with conflicting interests in

variable environments. Thus one needs to integrate various

search policies for different situations into one coherent

performance metric to study the effectiveness of the entire

mission planning process. Such a performance metric has

to be comprehensible and relatively easy to optimize. The
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existing search theory does not have an immediate answer

to such a requirement.

The rest of the paper is organized as follows. Section II

presents the optimal search strategy for finding stationary

objects. Section III discusses the robust search procedure

when the object distribution is unknown. Section IV extends

the existing search problem to a search-allocation game

where the evasive object motion is modeled as a multi-stage

search-and-hide game. Simulation examples are provided in

Section V and concluding summary is in Section VI.

II. OPTIMAL SEARCH STRATEGY FOR STATIONARY

OBJECTS

Consider a searcher who starts with the most likely cell

i and does not change to another cell unless z i(t) drops by

δ/n for some small δ > 0. When this decrease of the log-

likelihood ratio occurs, the searcher switches to the most

likely cell j (which used to be the second best cell to search).

If there is only one object hiding in one of the n cells and the

maximum allowable error probability is ε , then the searcher

will make a decision that cell i contains the object once

zi(t)> τ(ε) and the threshold is chosen by

τ(ε) = log

[(

1− ε

ε

)

(n− 1)

]

. (3)

As δ → 0, the above search procedure becomes optimal in

the sense of minimizing the expected search time to reach a

decision with error probability no larger than ε [11]. Assume

that the prior probability for cell i to contain an object is 1
n

for i = 1, ...,n. If the searcher applies the optimal policy with

possible switching frequency among different cells being

arbitrarily high, then the expected search time under the

optimal procedure is

T (ε) =
2σ 2

µ2

{

(n− 2)

(

n− 1− nε

n− 1

)

+

(1− 2ε) log

[(

1− ε

ε

)

(n− 1)

]}

(4)

and we can see that the expected search time scales like

O

(

2σ 2

µ2 log 1
ε

)

in the asymptotic regime.

A practical procedure to approximate the optimal search

policy can be described as a two-stage approach [8]:

• Stage 1: Search each cell with a small fixed time t1(ε)
to update the posterior probability for each cell.

• Stage 2: Search the cells in the order of decreasing

posterior probabilities for time t2(ε) and declare the

finding of object whenever the log-likelihood ratio ex-

ceeds τ(ε).

The two-stage approach has only twice of the expected

search time by the optimal policy in the asymptotic regime

and the same scaling law independent of n.

In a discrete-time setting, one assumes that the searcher

has to spend at least T seconds in any cell and then decides

whether to look at this cell for another T seconds or search a

different cell. In this case, the searcher will always choose the

cell with the largest log-likelihood ratio at the decision time.

The searcher will declare the finding of object whenever

the log-likelihood ratio exceeds τ(ε). If at the end of a T

second search on a cell, the searcher has to quantify its

belief on whether the cell contains an object or not, then

the problem becomes a sequential decision with quantized

input — instead of the actual log-likelihood ratio, only two

quantized values of 0 and 1 are allowed. The optimal search

policy remains to be a greedy one by focusing on the cell

with the highest cumulative score at each step [7]. The

quantization rule at each step is assumed to be fixed, which

leads to the false alarm probability α and miss probability

β . Since pi(0) is usually fairly small for any cell i, the most

informative quantization rule should operate at the condition

αi

1−βi

=
pi(0)

1− pi(0)
(5)

for any cell i.

Next, we consider another asymptotic regime where the

number of cells n becomes very large and the number

of objects hiding among the n cells increases sublinearly

according to n1−c where c∈ (0,1) is a constant scaling factor.

If the searcher distributes its effort equally among the n cells,

we will have the following simplified observation model

Yi ∼ N (µi,1), i = 1, ...,n

where µi = 0 if cell i does not contain any object while

µi = µ > 0 if cell i contains an object. Note that µ can be

interpreted as the normalized signal-to-noise ratio (SNR). We

assume that µ scales like O
(√

2r logn
)

where r depends on

the scaling factor c on how the number of objects grows as

the number of cells increases. For any search procedure to

declare as many objects as possible and maintain the false

discovery rate to grow in a lower scaling law, we need to use

two performance metrics to characterize the desired asymp-

totic property. Define the false discovery proportion (FDP)

to be the number of incorrectly declared objects relative to

the total number of object declarations. The non-discovery

proportion (NDP) is defined as the number of objects missed

by the searcher relative to the total number of no-object

declarations. A searcher is said to be asymptotically efficient

if both FDP and NDP approach zero as n → ∞. Intuitively,

the normalized SNR has to be high enough for the searcher to

design an efficient search policy. In fact, if r < c, no searcher

can be made asymptotically efficient. On the other hand, if

r > c, then a searcher using coordinate-wise thresholding rule

to declare the object on each cell is asymptotically efficient

[5]. The interesting case lies at the boundary r = c where the

design of optimal search policy is highly related to sparse

signal recovery and compressed sensing [4].

Consider a normalized observation model for cell i that

allows multiple looks

Y
( j)
i =

√

φ
( j)
i µi +N

( j)
i , i = 1, ...,n, j = 1, ...,k (6)

where N
( j)
i ∼ N (0,1) is the additive white Gaussian noise

and φ
( j)
i is related to the signal-to-noise ratio that has been

6982

Authorized licensed use limited to: University of New Orleans. Downloaded on August 03,2010 at 21:46:23 UTC from IEEE Xplore.  Restrictions apply. 



dedicated in the j-th sensing action to cell i. Without loss

of generality, we impose the total energy constraint for the

whole search effort given by

∑
i, j

φ
( j)
i ≤ E (7)

Note that setting

φ
( j)
i =

1

k
, i = 1, ...,n, j = 1, ...,k

is equivalent to a single look for each cell with φ i =
E
n

owing

to the independence of the noises in the multiple looks and

the total energy constraint.

We consider a sequential search procedure that takes the

advantage of the multiple looks in the spirit of the two-

stage method. We apply a portion of the energy to crudely

search all cells; eliminate a fraction of the cells that appear

least promising from further consideration; and iterate this

procedure for several times, at each step searching only those

cells retained from the previous step. The algorithm runs in

the following manner.

• Input: Number of total stages k and energy budget E ( j)

for stage j such that ∑k
j=1 E( j) ≤ E.

• Initialization: Index set of cells to be searched I (1) =
{1,2, ...,n}.

• Adaptive Sensing: At stage j, search cell i with equal

effort E( j)

|I( j) | if i ∈ I( j) and obtain the measurement Y
( j)
i .

Update the index set by i ∈ I ( j+1) if Y
( j)
i > 0 for all the

cells being searched.

• Output: The final index set I (k) which is very likely to

contain most of the objects.

In order to retain the signal component at each stage, we

need to allocate a large portion of sensing energy to the

first step. Due to the sparsity of the objects, most cells

will be eliminated in the subsequent search stages with

reduced energy. One possible energy allocation design is to

exponentially decrease the energy allocated on each cell from

one stage to the next. For example, given a design parameter

d ∈ (0,1), we have

E( j) =

{

dE
2

(

1− d
2

) j−1
, j = 1, ...,k− 1

E
(

1− d
2

)k−1
, j = k

(8)

that satisfies ∑k
j=1 E( j) = E. In this case, when r > c/(2−

d)k−1, the k-stage procedure guarantees that FDP and NDP

approach zero with probability one as n→∞. Note that when

r → c, we need at least

k = O

(

log(logn)

log(2− d)

)

(9)

stages to reliably identify the sparse locations of the objects.

The proof follows the ideas presented in [5] and is omitted

due to page limit.

III. ROBUST SEARCH IN DISCRETE SPACE WITH

UNKNOWN OBJECT DISTRIBUTION

Consider searching an object in one of n discrete cells

where the probability of finding the object in cell i within

the search time t given that the object is in cell i is denoted by

b(i, t). Note that b(i, t) is often called the detection function

for cell i and satisfies

d2b(i, t)

dt2
< 0,

db(i, t)

dt

∣

∣

∣

∣

t=0

> 0,
db(i, t)

dt

∣

∣

∣

∣

t=∞

= 0 (10)

A popularly used non-detection function q i(t) = 1−b(i, t) is

exponential

qi(t) = e−ηit , i = 1, ...,n (11)

where ηi is an indicator factor measuring how effective a

unit resource is in the i-th cell for detecting the object. If the

total search time is T , then we are interested in how much

effort in terms of search time ti should be allocated to cell i

in order to maximize the overall object detection probability.

Of course this depends on the prior probability p i that the

object is in cell i. Given any probability distribution {p i}n
i=1,

the optimal search strategy can be written as

J = max
{ti}

n

∑
i=1

pib(i, ti)

subject to
n

∑
i=1

ti ≤ T

and it has a unique solution for the case of p i > 0 given by

ti = c
log(piηi)

ηi

, i = 1, ...,n (12)

where c is the normalizing constant given by

c =
T

∑n
i=1 log(piηi)/ηi

(13)

However, when the true distribution {p i} is unknown while

the searcher assumes a different distribution {p̄ i} to derive

the optimal search procedure, the resulting detection proba-

bility becomes

J̄ =
n

∑
i=1

pi(1− e−ηit̄i) (14)

where the search time for cell i is given by

t̄i =
log(p̄iηi)/ηi

∑n
i=1 log(p̄iηi)/ηi

T (15)

It is clear that J̄ ≤ J. Without knowing {pi}, one can choose

{p̄i} to minimize J− J̄ for all possible distributions {pi}. In

the worst case, assuming that η1 = η2 = · · · = ηn = 1, we

have

J − J̄ = e−T/n
n

∑
i=1





(

n

∏
i=1

p̄i

)1/n

pi −
(

n

∏
i=1

pi

)1/n

p̄i



/p̄i

(16)

The performance gap increases as n increases. This indicates

that the robust solution can be significantly worse than the

optimal solution when knowing {p i}. Thus when the evasive

6983

Authorized licensed use limited to: University of New Orleans. Downloaded on August 03,2010 at 21:46:23 UTC from IEEE Xplore.  Restrictions apply. 



object has certain level of intelligence to select its {p i},

it will have the incentive to do so in order to minimize

the detection probability of the searcher. We will discuss

an alternative formulation of the search problem via search-

allocation game in the next section.

IV. EVASIVE OBJECT SEARCH VIA

SEARCH-ALLOCATION GAME

When objects can move among those cells being searched,

the problem becomes a search allocation game where two

players, a searcher and an evader, join the game. At the initial

time, the searcher has a total energy constraint E. Using

this total energy, the searcher has to allocate resources in

the search space to detect the evader. The evader has an

initial energy e0. The evader can move in the search space

under energy constraint as well as some other factors to be

described next. The strategies and information sets of the

players, the payoff function and the process of the game are

as follows.

• At the beginning of time k, the searcher obtains the

information about the evader’s position, say, cell i, and

his residual energy. At the same time, the evader is

informed on the searcher’s residual budget.

• Then the evader makes a decision to move from the

cell i to its neighborhood cells N(i) in a probabilistic

manner. Specifically, he will spend e(i, j) to move from

cell i to cell j assuming that e(i, j) > 0 if i �= j and

e(i, i) = 0.

• The searcher allocates his resources based on his hy-

pothesized estimate of the cell that the evader moves to.

However, this allocation has to take his residual energy

into account.

• If the evader is in cell i and the x amount of resource is

allocated there, then the searcher can detect the evader

with probability 1−qi(x) where the non-detection func-

tion qi(x) is monotonously decreasing in x. Typically,

we can model the miss probability by

qi(x) = e−ηix (17)

where ηi is an indicator on how effective a unit resource

is in the i-th cell for detecting the evader. When the

searcher detects the evader, he receives payoff 1 and

the evader loses the same amount. At this moment, the

game is terminated.

• Unless the detection occurs at time k, the game will

proceed to the next stage k− 1 until it reaches k = 0.

The above formulation is clearly a multi-stage zero-sum

stochastic game. A general stochastic game may be played

forever; however, it terminates with probability one under the

assumption that it has positive probability of termination at

any stage and the value of the game is uniquely determined

[10].

Let pi be the probability that the evader chooses cell i

for his hiding location. Let c i be the budget that it costs to

distribute a unit resource in cell i. Let ηi be the effectivity

that unit resource has on the detection of evader in cell i.

Let φi be the search resources allocated to cell i. Let ξ i be

the value of the game in the state that evader is in cell i and

the searcher allocates φi resource on it with the criterion of

miss probability. In one-stage game, we have the following

minimax problem.

min
{φi}

max
{pi}

∑
i∈A

piξie
−ηiφi (18)

subject to

pi ≥ 0, ∑
i∈A

pi = 1 (19)

φi ≥ 0, ∑
i∈A

ciφi ≤ E (20)

This minimax problem has a unique solution given by the

following water-filling procedure.

φi =
1

ηi

[

log
ξi

ρ

]+

(21)

pi =

{

ci/ηi

∑ j,ρ≤ξ j
c j/η j

, ρ ≤ ξi

0, ρ > ξi

(22)

where [x]+ =max{x,0} and ρ is determined by the following

equation

∑
i∈A

ci

ηi

[

log
ξi

ρ

]+

= E (23)

We can apply the above result of the single-stage game

recursively to the multi-stage game and the solution becomes

an iterative water-filling procedure. Note that the above game

theoretic formulation assumes that the evader’s position is

exposed to the searcher at every stage, which is clearly a

disadvantage to the evader. A more challenging problem

would be that the evader’s position is only revealed to the

searcher at the initial time. Then it becomes a standard

pursuit-evasion game where only long-term strategies for

both players are meaningful in the analysis [6], [10].

V. SIMULATION STUDY

To demonstrate the effectiveness of the optimal strategy

for the search-allocation game, we implemented the resource

allocation method in an intelligence, surveillance, and recon-

naissance (ISR) scenario where the searcher needs to find a

moving object with prior information that it may hide near

one of the bridges (Fig. 1a). We first divided the search space

into 10×10 cells and assigned the relevant parameters based

on the terrain feature and importance of each cell. Since η i is

an indicator on how effective a unit resource is in the i-th cell

for detecting the evader, we assigned the value for each cell

as shown in Fig. 1c. Note that on each cell, value 1 means the

least effective; value 3 indicates the most effective (in this

case, the cell is on the river), and 2 is an average effective

level without complex urban buildings. The value c i indicates

the searcher’s cost for allocating unit resource on the i-th cell.

It will be 1 if cell i is on river and 2 when including urban

environment with buildings. The searcher’s cost to assign

unit resource on each cell is shown in Fig. 1d. The game

value ξ represents the importance of the i-th cell. Since the

searcher’s top level objective is to capture two bridges, the
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a. terrain of the search area b. the game value for each cell

c. effectivity of unit resource for each cell d. searcher’s cost of assigning unit resource for each cell

Fig. 1. An illustrative scenario for searching an evasive object

cells near two bridges have relatively larger values. The value

for each cell is shown in Fig. 1b.

To evaluate the performance of the proposed search strat-

egy (denoted by game search), we compare it with the ran-

dom search method where cells are randomly selected. The

probability of selecting each cell is based on its importance.

At the end of each stage, the searcher will either declare

the acquisition of the evader in a particular cell or continue

allocating his energy to cells until running out of the budget.

For a fixed budget E, we performed 1000 Monte Carlo

simulations for each algorithm and estimated the detection

probability where evasive object applies the optimal strategy

to the minimax game in each stage. The estimated detection

probabilities after playing 20 stages are shown in Fig. 2.

It is expected that the detection probability will increase

as the searcher has more budget to allocate to the search

area. However, we observe some fluctuations in both curves

using game search and random search due to inadequate

Monte Carlo runs. Nevertheless, game search outperforms

random search in all cases for E ranging from 5 to 50.

Fig. 3 compares the detection probability at the end of each

stage when the searcher has the budget E = 5. The miss

probability using game search is 54.1%. This means that

there is 54.1% chance that the searcher can not find the object

after using all of the budget. Note that the miss probability

is 65% using random search under the same condition. We

can also see that the probability of detecting the object in

early stages using game search is usually much higher than

that using random search. For different budget constraint,

we summarized the comparative results for the first five

stages in Table 1. It is clear that game search outperforms

random search in the following two aspects: 1) it yields larger

detection probability in each stage for the first five stages;

and 2) it also has larger detection probability for extended

stages so that the overall miss probability is smaller than that

using random search. This is mainly due to the intelligent

behavior of the evasive object: it has a tendency to hide to

a cell where the searcher needs to allocate more resource

in order to make a detection. This confirms the theoretical

analysis that the searcher’s expected game value can not

increase in any stage by deviating from the optimal search

strategy derived from the search-allocation game.

VI. DISCUSSION AND CONCLUSIONS

We considered the search problem in a sequential decision

setting where the searcher has to determine which cell to

perform the sensing action at any given time based on the

measurements accumulated so far. For a single stationary

object located in one of the n cells, the two-stage approach

has close-to-optimal performance in terms of the minimum

expected time to declare the object location with a given

error rate. For acquiring a few objects in sparse locations,
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TABLE I

COMPARISONS OF DETECTION PROBABILITIES

Search Search Detection Probabilities
Budget Algorithm Stage 1 Stage 2 Stage 3 stage 4 Stage 5 First 5 Total

E = 5
Random 6.5% 6.4% 4.7% 3.0% 1.7% 22.3% 34.4%
Game 10.6% 11.5% 9.0% 10.0% 4.8% 45.9% 49.4%

E = 10
Random 9.5% 10.3% 6.5% 6.3% 3.5% 36.1% 51.6%
Game 12.3% 14.3% 9.5% 9.3% 5.9% 51.3% 62.3%

E = 20
Random 10.7% 10.7% 8.5% 7.3% 5.6% 42.8% 60.3%
Game 16.1% 15.5% 7.8% 6.6% 5.6% 51.6% 75.9%

E = 40
Random 11.6% 12.5% 10.5% 7.6% 7.5% 49.7% 75.4%
Game 18.7% 15.6% 9.7% 8.5% 6.3% 58.8% 83.4%
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Fig. 2. Comparison of detection probabilities with different resource
constraints

the k-stage procedure ensures the false discovery proportion

(FDP) and non-discovery proportion (NDP) approach zero

with probability one in the asymptotic regime, which meets

the best scaling law of object sparsity. When the object

can hide from cell to cell during different stages of the

search procedure, the search allocation game in the two-

player zero-sum complete-information setting has a unique

minimax solution corresponding to an iterative water-filling

procedure by allocating the sensing effort to those cells

with relatively larger detection probabilities. A simulated ISR

example demonstrated the effectiveness of using the minimax

solution to the search-allocation game for acquiring the eva-

sive object. The minimax solution significantly outperforms

the random search method in terms of the probability of

detecting the evasive object in the repeated game.
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